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SGA genetic interaction dataset 
All data files can be downloaded from: 

http://drygin.ccbr.utoronto.ca/~costanzo2009/ 

General description of the Synthetic Genetic Array (SGA) 
interaction score 

To derive quantitative genetic interactions, we modeled colony size as a multiplicative 

combination of the double mutant fitness, time, and experimental factors. Specifically, 

for a double mutant carrying mutations of genes i and j, colony size Cij can be expressed 

as 

! 

Cij = f ij " t " sij " e , where fij is the double mutant fitness, t is time, sij  is the combination 

of all systematic factors, and e is log-normally distributed random noise. The double 

mutant fitness fij can be further expressed as 

! 

fij = f i f j + "ij , where fi and fj are the 

fitnesses of the two single mutants and !ij is a quantitative measure of the genetic 

interaction between them. Note that this reflects the typical assumption of a 

multiplicative “null model” (S1) and ij
! measures deviations from that null model.  

Accurate measurements of quantitative genetic interactions are dependent on the correct 

estimation of single and double mutant fitness. We found that observed yeast mutant 

colony sizes can be severely affected by systematic experimental biases that alter a 

colony’s growth independently of its fitness. We identified and corrected five major 

systematic effects that contribute the majority of the observed variance in colony size. 

These systematic effects included positional effects, spatial effects, nutrient competition 

effects, and screen batch effects. 

To derive accurate estimates of single mutant fitness, we applied our correction method 

to a set of control SGA screens, where the queries carried a mutation in a neutral genomic 

locus. The obtained single mutant fitnesses (fi and fj) were combined with the double 

mutant fitnesses (fij) estimated from regular SGA experiments to derive genetic 

interaction measures as 

! 

" = fij # f i $ f j . A statistical confidence measure (p-value) was 

assigned to each interaction based on a combination of the observed variation of each 

double mutant across four experimental replicates and estimates of the background log-

normal error distributions for the corresponding query and array mutants.  Estimates of 

the error distribution for each array and query mutant were estimated separately from the 

set of all other double mutants carrying the corresponding array or query mutation, 

respectively. 

General information about the dataset 

The SGA genetic interaction dataset is composed of 1712 queries crossed to 3885 array 

strains. Of 1712 queries, 1378 are deletion mutants of non-essential genes and 334 are 

essential gene alleles (214 temperature-sensitive and 120 DAmP alleles). TS and DAmP 

queries are indicated by “_tsq” and “_damp” suffixes, respectively. For a subset of 

essential genes, several different TS alleles were tested, as indicated by a unique number 

following the “_tsq” suffix. The set of array strains originally contained 4293 non-

essential deletion mutants, but 408 mutants were removed for quality control reasons or 

due to incompatibility with SGA technology. Approximately 645,000 individual gene 

pairs were filtered from the 1712 x 3885 genetic interaction matrix for the same reasons. 
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The resulting dataset contains raw genetic interaction scores for ~6 million double 

mutants.  

The SGA genetic interaction dataset is available for download in various text formats 

(see Data Files S1-S5) or through a web-based database, DRYGIN 

(http://drygin.ccbr.utoronto.ca, (S2)). SGA data can also be explored through the 

SGAExpress browser (http://www.ailab.si/sgaexpress). 
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Materials and Methods 

SGA query strain construction and screening 

SGA query strain construction and screening were conducted as described in (S3). 1712 

query mutants were screened against an array of 3885 non-essential deletion mutants. 

Some deletion array mutants were removed for quality control reasons or due to 

incompatibility with SGA technology. All screens were conducted a single time with 4 

replicate colonies per double mutant, except for 211 query mutants that were screened 

twice (8 replicate colonies).  

Biological process annotations 

Biological process categories, described in Fig. 4, were derived functional enrichment of 

network clusters identified in Fig. 1 and further refined by examining cluster enrichment 

of network sub-regions (Fig. 2A, Data File S8). Genes were assigned to one or more of 

these functional categories on the basis of examination of their Gene Ontology 

annotations (www.geneontology.org) and gene function descriptions available from the 

Saccharomyces Genome Database (SGD, www.yeastgenome.org). Specific annotations 

are provided in Data File S6. A subset of uncharacterized or multi-functional genes that 

were difficult to assign to defined functional groups were not assigned to any functional 

category. 

False positive and false negative rate estimation 

Sensitivity is defined as the fraction of known interactions identified by an assay.  

! 

sensitivity =
TP

TP + FN
 

We estimated SGA sensitivity for detecting true genetic interactions by evaluating 

previously published interactions from Biogrid (www.thebiogrid.org, downloaded on 

May 4
th

, 2009). For negative genetic interactions, we considered Biogrid interactions 

annotated as phenotypic enhancement, synthetic growth defect and synthetic lethality. 

For positive genetic interactions, we considered Biogrid interactions annotated as 

phenotypic suppression and synthetic rescue. By systematically varying SGA genetic 

interaction score (") and p-value cutoffs, we calculated the number of true positives (TP) 

as the number of Biogrid interactions with SGA genetic interaction scores and p-values 

more extreme than the chosen cutoff (Fig. S2A, sensitivity).  

Precision is the fraction of true interactions in the set of all identified hits.  

! 

precision =
TP

TP + FP
 

We estimated precision of our positive and negative genetic interactions by comparing 

the frequency of overlap between replicate AB-BA screened pairs using the following 

strategy. Given a square matrix of SGA genetic interaction scores where every gene A is 

present both as query (AB) and as array (BA), the total number of interactions at a certain 

cutoff is the sum of interactions called by AB pairs only, BA pairs only and those called 

by both. The interactions called by both AB and BA (Noverlap) are expected to be a mixture 

of true positives and false positives. The true positive portion of Noverlap depends on the 
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total number of interactions called by AB (NAB), the probability of them being true 

positives (precision p) and the probability of them not being missed by BA (sensitivity = 

1 – FNR). The false positive portion of Noverlap depends on the total number of 

interactions called by AB (NAB), the probability of them being false (1 – p) and the 

probability of them being incorrectly called positive by BA (specificity = 1 – TNR).  

Overall, the number of interactions called by both AB and BA is given by: 

! 

Noverlap = Noverlap _ true + Noverlap _ false = p " NAB " 1# FNR( ) + 1# p( ) " NAB " 1#TNR( )  

Given that Noverlap, NAB and FNR are known, and 1 – TNR can be at most equal to the total 

density of interactions in the matrix (adopting the conservative assumption that all the 

interactions reported are false), precision can be calculated as: 

! 

precision p( ) =
Noverlap " NAB # 1"TNR( )

NAB # 1" FNR( ) " NAB # 1"TNR( )
 

Sensitivity and precision of SGA genetic interaction scores at a range of cutoffs are 

reported in Table S6.  

Constructing the functional map of the cell 

To generate the network shown in Fig. 1, genetic interaction profile similarities were 

measured for all query and array gene pairs by computing Pearson correlation 

coefficients (PCC) from the complete genetic interaction matrix. Correlation coefficients 

of gene pairs screened both as queries and as arrays were averaged. Gene pairs whose 

profile similarity exceeded a PCC > 0.2 threshold were connected in the network, and an 

edge-weighted spring-embedded layout, implemented in Cytoscape (S4), was applied to 

determine node position. Genes sharing similar patterns of genetic interactions located 

proximal to each other in two-dimensional space, while less-similar genes were 

positioned further apart. 

Functional enrichment of genetic interactions 

Enrichment for protein-protein interactions (Eppi, and analogously EGO for Gene Ontology 

co-annotated gene pairs) shown in Fig. S2B was calculated as follows: 

! 

Eppi =
Ncutoff ,ppi Ncutoff

Nppi N
 

where: 

N = total number of pairs tested 

Nppi = total number of protein-protein interactions among the pairs tested 

Ncutoff = number of pairs above the cutoff 

Ncutoff,ppi = number of protein-protein interactions among the pairs above the cutoff 

The protein-protein interaction standard was downloaded from Biogrid 

(www.thebiogrid.org) on May 4
th

, 2009. The functional co-annotation standard was 

derived from the biological process aspect of the Gene Ontology, as described in (S5). 

Recall of published genetic interactions 

The analysis presented in Fig. S1D was performed as follows. The published set of 

genetic interactions was downloaded from Biogrid (www.thebiogrid.org, on May 4
th

, 

2009), and restricted to gene pairs assayed in our study. We determined the fraction of 
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interactions identified in this study (p < 0.05, systematic " thresholds) that overlap with 

the Biogrid set and compared it to random expectation. Both negative and positive SGA 

genetic interactions (") were significantly enriched for known genetic interactions. 

Extreme negative (" < –0.8) and positive (" > 0.25) interactions were approximately 140- 

and 80-fold enriched for previously identified interactions, respectively. 

Comparison of SGA genetic interaction scores with high-
resolution liquid growth profiles  

A recent study analyzed 26 genes, conferring resistance to the DNA damaging agent 

methyl methanesulfonate (MMS), by accurately measuring growth rates of all 26 single 

and 325 double deletion mutants in liquid medium (S6). Of the 325 gene pairs tested in 

(S6), 239 were covered by our SGA dataset. We compared quantitative genetic 

interaction scores derived from liquid growth profiles to those derived from colony size 

measurements for corresponding pairs, and observed strong correlation (r = 0.89) on both 

strong and modest interactions. 

Comparative analysis of function prediction from genetic 
interaction profiles 

Datasets 

The datasets used in the function prediction analysis are provided in Table S3. All genetic 

and protein interaction datasets except two (Wilmes 2008 (S7) and Fiedler 2009 (S8)) 

were downloaded from the BIOGRID database (www.thebiogrid.org, version 2.0.45). 

Wilmes 2008 and Fiedler 2009 were directly downloaded from the corresponding online 

Supplements. Protein localization and gene expression datasets were downloaded from 

the corresponding online Supplements.  

The input to the GeneMANIA algorithm is one or more functional association networks 

(for details, see (S9)). As such, for profiled-based datasets (gene expression and 

localization datasets), we constructed functional association networks using Pearson 

correlation coefficient (PCC). For protein and genetic interaction datasets, we used both 

an undirected binary interaction network and correlation-derived networks using PCC. 

The correlations were calculated on the quantitative scores when possible (Wilmes 2008, 

Fiedler 2009, and this study). All correlation-based networks were sparsified by setting to 

zero any interaction that is not among the top 100 highest interactions for either gene. 

Comparison of genomic datasets in gene function prediction 

We compared the performance of high-throughput datasets derived from nine 

publications with that in the current study, in predicting gene function using the 

GeneMANIA algorithm (Fig. S2D, i-ii). To do so, we used all functional association 

networks derived from each publication (see above) in turn to predict 1,885 GO 

biological process categories with 3-300 annotations (www.geneontology.org, 

downloaded in July 2009). For predicting each GO category, GeneMANIA combines the 

input networks in a context-specific manner. The performance in predicting each 

category was recorded as the average precision, across all recalls, and precision at 10% 

and 20% recalls.  To compare across general genomic technologies (Figure S2A, i), we 
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grouped datasets by technology type (AP/MS, gene expression, Y2H, protein 

localization) (Table S3) and counted the number of distinct GO terms among the 1885 

that were predicted at 70% precision or higher at 10% recall.  

Leave-One-Out Analysis 

We used the GeneMANIA algorithm to assess the amount of unique information that 

each genetic interaction dataset contributes to the existing knowledge about functional 

relationships between genes (Fig. S2D, iii, right). In particular, we recorded the average 

precision in predicting each of 1,885 gene sets, each corresponding to a GO category, in 

cross-validation, using eight genetic interaction datasets. We then removed each dataset 

in turn and recorded the resulting difference in precision. In this way, we quantified the 

average loss in precision in re-producing the known functional relationships in the 

absence of each genetic interaction dataset. 

Identifying sub-networks from the global map 

The correlation-based network (Fig. 1) was clustered using Markov Clustering Algorithm 

(MCL; inflation = 1.4) (S10), as well as GINECA, a newly developed approach for 

identifying partially overlapping clusters (see Materials & Methods, GINECA clustering 

algorithm). Clusters identified in both methods were aggregated into eight sub-networks 

on the basis of their relatedness, measured by the degree of cluster overlap for GINECA 

and by average network proximity after 25 network layout iterations for MCL. Eighty 

functionally unrelated genes were removed from the network because their similarities 

may be due to experimental artifacts, such as residual systematic effects that are 

enhanced in the absence of strong genetic interactions. 

GINECA clustering algorithm 

GINECA (Genetic Interaction Network Enumerative Clustering Algorithm) is a scalable, 

semi-supervised graph clustering algorithm for identifying overlapping clusters of 

functionally-related genes from dense, weighted molecular interaction networks. The 

core of GINECA is a set of matrix operations, simulating density-based searches of local 

maxima in a 2-dimensional data space, applied recursively to extract sub-matrices from a 

large dense matrix representation of weighted interaction scores between the genes. This 

iterative approach enables some genes to have overlapping memberships in more than 

one functional cluster, since a gene can be involved in multiple biological processes. 

Through a constraint-based semi-supervised clustering approach, GINECA exploits 

known functional assignments of the genes, such as the Gene Ontology (GO) annotations, 

to guide the clustering algorithm towards more meaningful data partitioning, thus 

generating clusters of highly connected genes that are also functionally enriched. One or 

more clusters meeting statistical functional significance criteria are pruned from the 

network at each iteration, with the algorithm converging when all functionally enriched 

clusters are extracted, or when the remaining network is loosely connected. 

Gap1 permease localization and activity 

Strains deleted for PAR32, ECM30 and UBP15 and expressing GAP1-GFP were grown 

in SD ammonium medium and Gap1 localization was visualized as described previously 
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(S11). Wild type (WT) cells and gtr1! mutant cells were included as positive and 

negative controls, respectively. Gap1 permease activity for the indicated strains 

(histogram) was measured by 14C-citrulline uptake assays as described previously (S12). 

Data shown are the average of four independent experiments. 

Pex15 localization  

A pAG-EGFP-PEX15 plasmid was constructed by sub-cloning the PEX15 ORF from the 

Yeast FLEXGene collection (S13) into the Gateway(R) donor vector pDONR201 and 

subsequent cloning into an N-terminal GFP fusion expression vector (pAG416GAL-

GFP) as described elsewhere (S14). The EGFP-PEX15 plasmid was transformed into 

WT, sgt2!, get4!, pex19! and sgt2! pex19! strains. Cell cultures were grown at 30°C in 

SD-HIS media to early log phase, harvested by centrifugation. A 1.5 !l suspension was 

spotted onto a glass slide and images were captured using Quorum WaveFX Spinning 

Disc Confocal System. 

Elp/Urm amino acid usage analysis 

The three codons that pair with the URM/ELP modified tRNAs are AAA, GAA and 

CAA. For every ORF in the yeast genome, we calculated the relative frequency of the 

three codons by dividing their occurrence by the total number of codons for any amino 

acid in the sequence. The relative frequencies of these codons in URM- and ELP-

negative interacting genes were compared to a background distribution composed of all 

the genes tested in our study, excluding the URM/ELP interactors. Significance was 

evaluated using t-test and Wilcoxon rank sum statistics.  

Identification of Sgt2 and Ubp15 physical interactors 

Tandem Affinity Purification 

TAP-tagged strains (Open Biosystems, Huntsville, AL) were grown to OD600 ~0.7 in 

Synthetic Complete media lacking histidine (1 L, Sigma-Aldrich, St. Louis, MO). Cells 

were collected by centrifugation and lysed (vortexing with glass-beads), and the lysate 

cleared by centrifugation, followed by filtering (0.45 !m filters). Purification and 

identification of TAP-tagged proteins and their interacting partners was performed as 

described in (S15), except that human IgG cross-linked to tosyl-activated magnetic beads 

(Dynal) were employed instead of IgG-sepharose. Following elution with 25 mM EGTA 

in 50 mM ammonium bicarbonate (pH 8), 500 ng of sequencing-grade trypsin (Sigma 

Trypsin Singles, Sigma-Aldrich, St. Louis, MO) was added, and the samples were 

incubated at 37°C overnight. Digested samples were analyzed by nano-scale liquid 

chromatography coupled to tandem mass spectrometry (nLC-MS/MS), as described in 

(S16). Briefly, 4 cm of 3.5 µm Zorbax C18 (Agilent, Santa Clara, CA) in a fritted 150 µm 

ID column was used as a pre-column, in-line with a 10 cm 3.5 µm Zorbax C18 75 µm ID 

analytical column. A 100 min gradient of 0–80% acetonitrile (with 0.1% formic acid) 

was delivered in a split-flow manner by an Agilent 1100 Capillary HPLC. Data were 

acquired on a ThermoFisher LTQ linear ion trap (ThermoFisher, Pittsburg, PA), using a 

data-dependent method consisting of 1 MS scan followed by 4 MS/MS scans. After 

peptide ions were selected for MS/MS, they were placed on a dynamic exclusion list for 
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30 sec. Four wash gradients followed each sample analysis gradient, with sample loop 

injections of isopropanol, 2% TFA, acetonitrile and 0.1% formic acid, respectively. Wash 

gradients were 45 min, and consisted of 3 oscillations from 30% to 60% acetonitrile. 

Following the wash steps, 50 fmol of digested BSA protein was injected and analyzed 

with a 30 min gradient prior to the next sample analysis to monitor the presence of carry-

over peptides.  

Protein identification and initial data analysis 

LTQ data files were converted from binary *.raw files to Mascot generic files (*.mgf) 

and searched using Mascot 2.2.1 database search tool (S17) against the S. cerevisiae 

complement of RefSeq release 21 containing both forward and reverse protein entries 

(total 11,668 entries). Variable modifications were deamidation of asparagine and 

glutamine, oxidation of methionine and 1 missed trypsin cleavage. Mass accuracy 

requirements for searches were set to 3 Da on the parent, and 0.6 Da on product ions. 

Peptide scores above 35 corresponded to a protein false discovery rate of < 4%, 

determined using a target-decoy strategy (S18).  

Data filtering and interpretation 

A list of likely contaminants in TAP samples was generated by compiling results from 62 

unrelated TAP purification experiments. Proteins detected in 10% or more of these 62 

samples were placed on a contaminant list listed in Table S1. All other proteins identified 

with 2 or greater unique peptides were considered for subsequent analysis, and are listed 

in Table S2. To further validate the specificity of the detected interactions, we compared 

spectral counts for each protein detected in the Sgt2-TAP and Ubp15-TAP experiments 

with spectral counts detected across 19 unrelated experiments. In particular, we analyzed 

the occurrence of detection of given hits across these 19 unrelated samples, but also the 

maximal spectral counts with which this hit was detected across these samples. This 

allowed us to calculate an enrichment ratio for each of the observed hits in the Sgt2-TAP 

or Ubp15-TAP samples. For example, Sse1 (detected with 11 peptides in Sgt2-TAP) was 

detected in two out of 19 unrelated samples, with a maximal spectral count of 2 in these 

samples, indicating high enrichment in the Sgt2-TAP sample. Only those peptides 

detected with a number of spectra " 5 and 5-fold “enrichment” are reported in the main 

portion of the text. 

Ero1 in vitro activity and CPY processing assays 

Ero1 in vitro activity was monitored in the absence or presence of 25 µM Erodoxin by 

examining oxidation of reduced Trx1. Proteins were resolved by non-reducing SDS-

PAGE and Trx1 was visualized as described previously (S19). In vivo activity of Ero1 

was assessed by carboxypeptidase Y processing. 0.5 mM Erodoxin was added to wild-

type yeast cells in minimal medium, cells were incubated for 10 min at 30°C, pulse 

labeled for 7 min, and chased for 0-30 min. Carboxypeptidase Y (CPY) was 

immunoprecipitated and resolved by SDS-PAGE as described in (S20) 
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Identification of genetic interaction hubs and monochromatic 
genes 

We measured the number of positive and negative interactions for all 3885 non-essential 

array deletion mutants at the intermediate cutoff (|"| > 0.08, p < 0.05). Genetic interaction 

hubs were selected as the top 10% highest connected genes. Genes with a bias towards 

positive interactions were selected by finding genes with at least 30 total interactions and 

positive to negative ratio greater than 1, which is twice the background ratio. Genes with 

a bias towards negative interactions were selected by finding genes with at least 30 total 

interactions and positive to negative ratio lower than 0.25, which is one-half of the 

background ratio. Both of these sets consisted of approximately 130 genes. 

Functional enrichment analysis of genetic interaction hubs and 
monochromatic genes 

Genes were evaluated for functional enrichment using the standard approach described in 

(S21) based on the hyper-geometric distribution with the Westfall and Young step-down 

procedure for multiple hypothesis correction (S22). Enrichment analysis was based on 

annotations downloaded from the Saccharomyces Genome Database 

(www.yeastgenome.org) on July 9
th

, 2009. 

Correlation analysis of genetic and physical interaction degree 

To characterize the properties of genetic interaction hubs, we assessed the relationship 

between genetic interaction degree and several other gene/protein-level features. We 

measured the number of positive and negative interactions for all of the 3885 non-

essential array deletion mutants at an intermediate confidence cutoff (|"| > 0.08, p < 0.05). 

For each of the quantitative features described below, we measured the Pearson 

correlation coefficient (PCC) between both positive and negative degree across the 3885 

array genes (Fig. 3C, main text). We also computed correlation of all features with 

protein-protein interaction degree using the union of AP/MS (S23, 24), two-hybrid (S25), 

and PCA-based (S26) datasets. 

Because single mutant fitness is a major correlate of each of the features described below, 

we repeated the correlation analysis, controlling for the effect of single mutant fitness, by 

measuring partial correlation (S27). Correlation between genetic interaction degree and 

each of the features remains significant, as does the distinction between genetic protein-

protein interaction hubs (Fig. S5D). 

Description of gene/protein-level features analyzed 

Single mutant fitness defect 

Single mutant fitnesses for all non-essential deletion mutants as well as temperature-

sensitive or hypomorphic alleles screened in this study was derived from mutant colony 

size data as described in Materials & Methods, SGA genetic interaction dataset. For 

correlation analysis, the fitness defect, 1 – fi for a single mutant fitness fi, was used. 
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Multi-functionality 

A quantitative standard for gene multi-functionality was derived from annotations to 

“biological process” terms of the Gene Ontology. Specifically, the total number of 

annotations across a set of functionally distinct GO terms described in (S5) was used as a 

multi-functionality index. 

Phenotypic capacitance 

The phenotypic capacitance was used directly from the Levy & Siegal study (S28) and 

captures variability across a range of morphological phenotypes upon deletion of each of 

the non-essential genes. 

Chemical-genetic degree 

A measure of chemical-genetic degree was derived from (S29), which measured the 

sensitivity of all non-essential deletion mutants to a library of drugs as well as a variety of 

environmental conditions. Specifically, we summed the number of drug and 

environmental sensitivities for a given knockout in the homozygous dataset that met a 

p-value < 0.05 cutoff. 

PPI degree 

The protein-protein interaction degree is the total number of interactions in the union of 

four high-throughput physical interaction datasets (S23-26). These capture interactions 

derived from AP/MS (S23, 24), Y2H (S25), and PCA-derived physical interactions (S26). 

Interactions from (S23, 24) were taken from BioGRID, interactions from (S25) were 

taken from the reported Y2H-Union dataset, and interactions from (S26) were defined 

using the 97.7% confidence cutoff as recommended 

Protein disorder 

The protein disorder measure is the percent of unstructured residues as predicted by the 

Disopred2 software (S30) and reported in (S31). For correlation and ANCOVA analyses, 

this percentage was used directly as a correlate. For categorical analysis, we adopt the 

binning suggested in the original study: genes reporting scores lower than 0.1 are 

considered to be structured, scores between 0.1 and 0.3 to be moderately unstructured and 

scores above 0.3 to be unstructured. 

Expression level 

Expression level measurements representing the average number of mRNA copies of 

each transcript per cell were taken from (S32). 

Yeast conservation 

Yeast conservation is the number of species that possess an ortholog of a given gene, 

when considering 23 different species of Ascomycota fungi. This measure was first 

described in (S33) (called “persistence”), and ortholog data was downloaded from 

www.broadinstitute.org/regev/orthogroups/.  The 23 species are an expanded set of the 17 

species described in (S33) with the additions of S. octosporus, S. japonicus, L. 

elongosporus, C. parasilosis, C. tropicalis, and C. guilliermondii. 
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Copy number volatility 

Volatility measures the frequency of gain (including duplication) or loss events across 23 

species of Ascomycota fungi from (S33). The 23 species are those provided above in the 

description of Yeast conservation. 

dN/dS ratios 

We computed the average dN/dS ratio for S. cerevisiae in comparison to the sensu strictu 

yeast species (S. paradoxus, S. bayanus and S. mikatae). Sequences were aligned using 

MUSCLE (S34) and dN/dS ratios were computed using PAML (S35). 

Evolutionary age  

As an approximate measure of evolutionary age we used a reconstruction of the ancestral 

species as described in (S36). 

Gene duplicates 

The list of duplicate pairs consists of those identified as the result of the whole genome 

duplication event as reconciled from several sources in (S37). Additionally, any pair of 

genes fulfilling established similarity requirements (S38) was reasoned to be a duplicate 

pair resulting from a small scale duplication event. Specifically, the gene pair must have a 

sufficient sequence similarity score (FASTA Blast, E = 10) and sufficient protein 

alignment length (> 80% of the longer protein). The pair must also have an amino acid 

level identity of at least 30% for proteins with aligned regions longer than 150 a.a. and 

for shorter proteins the identity must exceed 0.01n + 4.8L – 0.32
(1 + exp(–L/1000))

, where L is 

the aligned length and n = 6 (S38, 39). Pairs from the whole genome duplication event 

(WGD) were combined with pairs determined through sequence alone (SSD). 

Analysis of variation in number of genetic interactions across 
bioprocesses 

Analysis of covariance (ANCOVA) was used to investigate the basis for variation in the 

number of total genetic interactions across biological processes. We measured the 

number of positive and negative interactions for all of the 3885 non-essential array 

deletion mutants at an intermediate cutoff (|"| > 0.08, p < 0.05). ANCOVA was used to 

measure the significance of the biological process of a gene in determining its degree of 

connectivity in the genetic interaction network in the presence of other gene-specific 

properties including the single mutant fitness defect and other properties examined in 

Fig. 3C. Specifically, we fit a linear model separately for the number of negative and 

positive genetic interactions, including each of the 17 broadly defined biological 

processes (see Materials & Methods, Biological process annotations) as independent 

variables along with the complete set of gene-specific features listed above (see Materials 

& Methods, Correlation analysis of genetic and physical interactions degree). We 

specifically tested each bioprocess term to assess whether it had a significant effect on 

genetic interaction degree in the presence of the other factors. 
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Results of ANCOVA on negative genetic interaction degree 

For both negative and positive genetic interaction degree, the majority of the bioprocess 

categories were not significant on the basis of our ANCOVA analysis (i.e., p-value > 

0.05), suggesting the number of genetic interactions in these neighborhoods were largely 

explained by properties at the gene level.  However, a subset of the bioprocesses (5 of 17) 

had a significantly more or less negative interactions than can be explained by the other 

features: more than explained: chromatin/transcription, chromosome segregation, and 

glycosylation;  less than explained:  DNA replication/repair, and amino acid biosynthesis.  

The complete results of the ANCOVA analysis of negative interaction degree are 

presented in Table S4. 

Results of ANCOVA on positive genetic interaction degree 

For positive interactions, 4 of 17 neighborhoods have significantly more/less interactions 

(p-value < 0.05) than can be explained by the single gene features.  Bioprocesses with 

more interactions than could be explained by gene-specific features were 

chromatin/transcription, nuclear-cytoplasmic transport, and lipid/sterol/fatty acid 

biosynthesis, while DNA replication/repair/HR/cohesion was the only process with 

significantly fewer than could be explained.  The complete results of the ANCOVA 

analysis of positive interaction degree are presented in Table S5. 

Assessing the contribution of gene-specific factors to interaction 
degree variation across bioprocesses 

We measured the contribution of each of the gene-specific features in “explaining away” 

variance observed at the bioprocess level. Specifically, we ran ANCOVA analysis on the 

following two models for each functional neighborhood: 

! 

Model 1:   degree(gi) = µ +"SMF(gi) + #$bioprocessgi

Model 2 :  degree(gi) = µ +" SMF(gi) + #$bioprocessgi
+ % factorX(gi)

 

where SMF(gi) is the single mutant fitness of the current gene, 
igbioprocess!  is the binary 

categorical variable for the corresponding bioprocess and factorX(gi) is the factor of 

interest. We measured the influence of factorX on the observed variation in degree for 

each bioprocess as follows: 

!
!

"

#

$
$

%

&

2model

model 1log
F

F
 

 

where 
imodel

F is the F-statistic corresponding to the bioprocess variable in each model. 

Intuitively, this reflects the degree to which the bioprocess contribution to genetic 

interaction degree is “explained away” by the particular feature being evaluated. High 

quantities here indicate that much of the variation in degree for that bioprocess is 

explained by the factor of interest. The higher this score, the higher the contribution of 

that variable. We note that this measure can actually result in negative influence of some 

factors, indicating that adding that particular feature actually increases the variance 

attributed to that particular bioprocess, not explains away. 
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Chemical genomic analysis 

Chemical genomic assays were performed as described previously (S29). The obtained 

fitness defect scores (log2 control/treatment, Data file S7) were mean normalized by gene 

and by experiment. This data, combined with the dataset described in (S29), was used for 

comparison to the SGA dataset. 
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Supplementary Tables 

Table S1. List of the likely contaminant proteins 

List of likely contaminant proteins, detected in >10% of the 62 TAP-MS analyses. NCBI 

gene ID and protein ID are listed for each protein, alongside their frequency of detection 

in TAP-MS analyses. These proteins were removed from the primary list of interactors 

obtained for Sgt2-TAP and Ubp15-TAP. 

 
Hit 

Gene 

Name 

Hit Gene 

ID 

Hit 

Protein 

ID 

Frequ-

ency 
 

Hit Gene 

Name 

Hit Gene 

ID 

Hit Protein 

ID 

Frequ-

ency 

ALB 280717 30794280 80.6  RPL35A 851336 6320010 40.3 

ATP3 852327 6319513 40.3  RPL36B 855826 6325006 16.1 

CDC19 851193 6319279 19.4  RPL38 851035 6323357 45.2 

CMD1 852406 6319585 41.9  RPL43B 853557 6322554 19.4 

DED1 854379 6324778 27.4  RPL4A 852319 6319505 45.2 

DEF1 853811 6322796 74.2  RPL5 855972 6325126 12.9 

EFT2 851993 6320593 12.9  RPL6A 854902 6323567 16.1 

HHF1 852294 6319481 14.5  RPL6B 851169 6323481 37.1 

HSC82 855224 6323840 21  RPL7A 852804 6321362 32.3 

HSP60 850963 6323288 11.3  RPL8A 856352 6321754 14.5 

ICS2 852454 41629678 67.7  RPL8B 850682 6322984 11.3 

ILV2 855135 6323755 12.9  RPL9A 852730 6321291 22.6 

INO80 852728 6321289 16.1  RPP0 851052 6323371 35.5 

ISM1 856067 6325217 43.5  RPS0A 853128 6321653 48.4 

KAR2 853418 6322426 17.7  RPS11B 852337 6319522 16.1 

KRT13 3860 4504911 11.3  RPS12 854551 6324945 12.9 

KRT14 3861 15431310 45.2  RPS13 851636 6320269 19.4 

KRT2 3849 47132620 62.9  RPS14B 853248 6322270 80.6 

KRT4 3851 109255249 19.4  RPS15 854117 6324533 32.3 

KRT5 3852 119395754 29  RPS16B 851476 6320120 41.9 

KRT6A 3853 5031839 19.4  RPS17B 852058 6320655 27.4 

LIP2 850940 6323268 71  RPS18A 852061 6320658 69.4 

LSM12 856521 6321913 77.4  RPS19B 855414 6324027 43.5 

MYO1 856418 6321812 53.2  RPS1A 851162 6323474 51.6 

NOP58 854487 6324886 11.3  RPS1B 854939 6323577 48.4 

PBP1 853089 6321617 77.4  RPS2 852754 6321315 19.4 

PBP4 851507 6320150 77.4  RPS20 856371 6321772 11.3 

RPL10 850764 6323104 21  RPS22A 853249 6322271 27.4 

RPL11B 852976 6321522 58.1  RPS23A 853015 6321556 27.4 

RPL12B 852026 6320625 53.2  RPS24A 856805 6320918 16.1 

RPL13A 851477 6320121 59.7  RPS25A 852911 6321464 12.9 

RPL14B 856388 6321786 21  RPS26B 856868 6320978 16.1 

RPL15A 850716 6323057 17.7  RPS3 855543 6324151 74.2 

RPL16A 854673 6322058 21  RPS4B 856610 6321997 24.2 

RPL16B 855655 6324260 24.2  RPS5 853587 6322583 61.3 
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RPL17A 853674 6322668 16.1  RPS6B 852479 6319658 54.8 

RPL17B 853262 6322284 22.6  RPS7A 854263 6324670 64.5 

RPL18B 855415 6324028 30.6  RPS7B 855628 6324233 67.7 

RPL19B 852254 6319444 33.9  RPS8A 852206 6319399 21 

RPL20B 854489 6324888 12.9  RPS9B 852487 6319666 43.5 

RPL21A 852489 6319668 33.9  SCM4 852940 6321486 17.7 

RPL22A 850750 6323090 29  SIK1 850894 6323226 22.6 

RPL23A 852191 6319384 54.8  SRO9 850320 37362625 19.4 

RPL24A 852852 6321407 21  SSA1 851259 6319314 62.9 

RPL25 853993 6324445 59.7  SSA2 850636 6323004 74.2 

RPL26A 851058 6323376 74.2  SSB1 851369 6319972 62.9 

RPL27B 852082 6320679 17.7  SSB2 855512 6324120 29 

RPL28 852775 6321335 12.9  TDH3 853106 6321631 67.7 

RPL2B 854794 6322171 24.2  TEF2 852415 6319594 54.8 

RPL3 854229 6324637 33.9  THI7 850938 6323266 21 

RPL30 852853 6321408 24.2  TUP1 850445 6319926 11.3 

RPL31A 851484 6320128 48.4  UTP22 852982 6321527 11.3 

RPL32 852185 6319378 16.1  VMA2 852424 6319603 19.4 

RPL33A 855960 6325114 12.9  VPS72 852096 37362638 11.3 

RPL33B 854409 6324808 11.3      
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Table S2. Detailed mass spectrometric evidence 

Proteins detected by 2 or more unique peptides and not identified as likely contaminants 

(Table S1) are listed, alongside MS scores. “Hit Score” is the score from the Mascot 

search engine, “n specs” is the total number of spectra (or peptides), “n peps” is the 

number of unique peptides, “coverage” is the percentage of the amino acid sequence 

observed. “Max specs”, “occurrence” and “enrichment” refer to the comparison of the 

individual runs (Sgt2-TAP, Ubp15-TAP) with 19 unrelated TAP-MS runs performed in 

the same time-frame. “Max specs” lists the maximum number of spectra assigned to the 

given hit across the unrelated 19 baits, “occurrence” refers to the number of times the hit 

was detected across these 19 purifications. “Enrichment” refers to the fold increase in 

spectral counts in the test purification as compared to the “max specs” across the 19 

control purifications. Highlighted in green are proteins specifically enriched with the 

isolated bait and for which 5 spectra or more were identified. 

 

Bait Gene Name 

Hit 

Gene 

Name 

Hit 

Gene 

ID 

Hit 

Score 

n 

specs 

n 

peps 

Cove-

rage 

Max 

specs 

Occur-

rence 

Enrich-

ment 

SGT2(C-TAP) SGT2 854168 1437 158 18 69.9 0 0 BAIT 

SGT2(C-TAP) YOR164C 854335 855 32 14 59.6 0 0 # 

SGT2(C-TAP) SSE2 852467 1087 24 20 34.3 0 0 # 

SGT2(C-TAP) MDY2 854038 388 17 7 50.5 0 0 # 

SGT2(C-TAP) SSE1 855998 519 11 6 19 2 2 9.5 

SGT2(C-TAP) TIF2 853303 209 6 4 16.2 3 1 2 

SGT2(C-TAP) ENO1 853169 245 5 4 14.6 2 1 2.5 

SGT2(C-TAP) HSP42 851751 137 5 3 9.3 0 0 # 

SGT2(C-TAP) TUB2 850506 192 4 4 13.3 2 2 2 

SGT2(C-TAP) MKT1 855639 184 3 3 5.3 0 0 # 

SGT2(C-TAP) PMA1 852876 133 3 3 3.8 10 3 0.3 

SGT2(C-TAP) ADH1 854068 79 2 2 6 0 0 # 

SGT2(C-TAP) ATP1 852177 109 2 2 4.6 0 0 # 

SGT2(C-TAP) GPM1 853705 89 2 2 12.6 2 2 1 

SGT2(C-TAP) HSP26 852364 87 2 2 12.1 0 0 # 

SGT2(C-TAP) RPO21 851415 111 2 2 1.7 0 0 # 

SGT2(C-TAP) URA2 853311 101 2 2 1.4 2 1 1 

UBP15(C-TAP) UBP15 855350 4434 796 60 65.3 11 1 BAIT 

UBP15(C-TAP) ECM30 851156 3226 203 45 61.6 0 0 # 

UBP15(C-TAP) DIG1 856058 511 13 8 26.8 4 7 3.25 

UBP15(C-TAP) STE12 856484 538 13 9 18.3 5 2 2.6 

UBP15(C-TAP) YMR160W 855195 264 5 5 8.1 0 0 # 

UBP15(C-TAP) UME6 851788 202 4 4 10.9 0 0 # 

UBP15(C-TAP) DIG2 852091 179 3 3 16.7 0 0 # 

UBP15(C-TAP) CDC55 852685 132 2 2 5.3 0 0 # 

UBP15(C-TAP) LSB3 850580 120 2 2 8 0 0 # 

UBP15(C-TAP) RPL40A 854658 91 2 2 14.1 0 0 # 

UBP15(C-TAP) SSD1 851887 186 2 2 2.9 0 0 # 

UBP15(C-TAP) YGR250C 853165 74 2 2 3.8 4 3 0.5 
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Table S3. List of datasets used for comparative analysis of 
function prediction 

Data type Dataset name Reference 

Gavin 2006 (S24) 

Krogan 2006 (S23) AP/MS 

Ho 2002 (S41) 

Yu 2008 (S25) (CCSB-YI1) 

Y2H 
Y2H Union 

(S25) (union of CCSB-YI1, Ito-

core and Uetz-screen) 

PCA Tarassov 2008 (S26) 

Other PPI Miller 2005 (S42) 

Chua 2006 
(S43) (union of deletion and 

overexpression datasets) 

Spellman 1998 (S44) 

Gasch 2000 (S45) 

Hughes 2000 (S46) 

Roberts 2000 (S47) 

Gene expression 

Yvert 2003 (S48) 

Protein localization Huh 2003 (S49) 

Tong 2004 (S50) 

Schuldiner 2005 (S51) 

Pan 2006 (S52) 

Collins 2007 (S53) 

Lin 2008 (S54) 

Wilmes 2008 (S7) 

Genetic interactions 

Fiedler 2009 (S8) 

Phosphorylation Ptacek 2005 (S55) 

Chemical genomics McClellan 2007 (S56) 
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Table S4. ANCOVA analysis of negative genetic interaction 
degree 

Source 
Sum Sq. 

Error 
d.f. 

Mean Sq. 

Error 
F-statistic P-value Coefficient 

Single mutant fitness 750703.86 1 750703.86 1515.87 0.00 -281.65 

Expression level 1891.59 1 1891.59 3.82 0.05 -0.22 

PPI degree 1769.83 1 1769.83 3.57 0.06 0.09 

Phenotypic capacitance 10546.64 1 10546.64 21.30 0.00 8.88 

Evolutionary age 1976.93 3 658.98 1.33 0.26 
-0.53, 0.42, -

1.88, 1.99 

Multi-function 4257.01 1 4257.01 8.60 0.00 0.76 

Copy number volatility 214.45 1 214.45 0.43 0.51 -0.02 

dN/dS 3165.72 1 3165.72 6.39 0.01 -17.83 

Local conservation 3954.93 1 3954.93 7.99 0.00 0.38 

Chemical-genetic degree 90079.40 1 90079.40 181.89 0.00 0.24 

Duplicate 8036.69 1 8036.69 16.23 0.00 -2.23 

Protein disorder 3574.10 1 3574.10 7.22 0.01 7.66 

Protein folding & 

glycosylation, cell wall 

biogenesis & integrity 

2204.75 1 2204.75 4.45 0.03 2.65 

Cell polarity & morphogenesis 685.87 1 685.87 1.38 0.24 -1.32 

Drug/ion-transport 436.95 1 436.95 0.88 0.35 -1.02 

Metabolism & mitochondria 127.07 1 127.07 0.26 0.61 -0.36 

G1/S and G2/M cell cycle 

progression/meiosis 
13.92 1 13.92 0.03 0.87 -0.26 

ER-Golgi traffic 902.42 1 902.42 1.82 0.18 2.48 

Golgi-endosome-vacuole 

sorting 
413.35 1 413.35 0.83 0.36 1.09 

Ribosome & translation 1323.88 1 1323.88 2.67 0.10 -2.03 

Nuclear-cytoplasmic transport 289.54 1 289.54 0.58 0.44 1.81 

Lipid, sterol, fatty acid 

biosynthesis 
766.90 1 766.90 1.55 0.21 1.65 

Signaling & stress response 1134.58 1 1134.58 2.29 0.13 1.45 

Chromatin/transcription 5529.19 1 5529.19 11.16 0.00 3.39 

Protein degradation, 

proteosome 
104.47 1 104.47 0.21 0.65 -0.73 

RNA processing 158.11 1 158.11 0.32 0.57 -0.82 

DNA replication & repair, HR, 

cohesion 
4819.22 1 4819.22 9.73 0.00 -3.85 

Chromosome segregation, 

kinetochore, spindle, 

microtubule 

3361.23 1 3361.23 6.79 0.01 3.67 

Amino acid biosynthesis & 

transport, nitrogen utilization 
4010.91 1 4010.91 8.10 0.00 -3.91 
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Table S5. ANCOVA analysis of positive genetic interaction 
degree 

Source 
Sum Sq. 

Error 
d.f. 

Mean Sq. 

Error 
F-statistic P-value Coefficient 

Single mutant fitness 152579.20 1 152579.20 847.10 0.00 -126.92 

Expression level 0.11 1 0.11 0.00 0.98 0.00 

PPI degree 1037.66 1 1037.66 5.76 0.02 0.07 

Phenotypic capacitance 4715.66 1 4715.66 26.18 0.00 5.95 

Evolutionary age 
921.19 3 307.06 1.70 0.16 

-0.71, 0.82, -

0.78, 0.67 

Multi-function 1344.34 1 1344.34 7.46 0.01 0.43 

Copy number volatility 195.80 1 195.80 1.09 0.30 -0.02 

dN/dS 1567.34 1 1567.34 8.70 0.00 -12.34 

Local conservation 76.71 1 76.71 0.43 0.51 0.05 

Chemical-genetic degree 33176.10 1 33176.10 184.19 0.00 0.15 

Duplicate 708.04 1 708.04 3.93 0.05 -0.66 

Protein disorder 913.28 1 913.28 5.07 0.02 3.86 

Protein folding & 

glycosylation, cell wall 

biogenesis & integrity 14.43 1 14.43 0.08 0.78 0.21 

Cell polarity & morphogenesis 659.89 1 659.89 3.66 0.06 -1.29 

Drug/ion-transport 266.19 1 266.19 1.48 0.22 -0.79 

Metabolism & mitochondria 12.48 1 12.48 0.07 0.79 -0.11 

G1/S and G2/M cell cycle 

progression/meiosis 2.86 1 2.86 0.02 0.90 -0.12 

ER-Golgi traffic 22.62 1 22.62 0.13 0.72 0.40 

Golgi-endosome-vacuole 

sorting 419.50 1 419.50 2.33 0.13 1.10 

Ribosome & translation 17.69 1 17.69 0.10 0.75 -0.23 

Nuclear-cytoplasmic transport 1544.63 1 1544.63 8.58 0.00 4.17 

Lipid, sterol, fatty acid 

biosynthesis 1009.86 1 1009.86 5.61 0.02 1.92 

Signaling & stress response 492.89 1 492.89 2.74 0.10 0.95 

Chromatin/transcription 1120.68 1 1120.68 6.22 0.01 1.52 

Protein degradation, 

proteosome 18.64 1 18.64 0.10 0.75 0.30 

RNA processing 248.22 1 248.22 1.38 0.24 1.02 

DNA replication & repair, HR, 

cohesion 1961.88 1 1961.88 10.89 0.00 -2.47 

Chromosome segregation, 

kinetochore, spindle, 

microtubule 0.88 1 0.88 0.00 0.94 -0.06 

Amino acid biosynthesis & 

transport, nitrogen utilization 337.17 1 337.17 1.87 0.17 -1.13 
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Table S6. Sensitivity and precision of SGA genetic interaction 
scores 

The number of interactions was calculated after processing reciprocal interactions as 

described in Materials & Methods, Data files S3-S5. 

 
Cutoff Negative interactions Positive interactions 

 Num. interact. Sensitivity Precision Num.interact. Sensitivity Precision 

Lenient 

p < 0.05 
366,085 0.41 0.27 323,935 0.26 0.20 

Intermediate 

|"| > 0.08, p < 0.05 
108,417 0.35  0.63 59,887 0.18 0.59 

Stringent 

" < –0.12, p < 0.05 

" > 0.16, p < 0.05 

58,508 0.28 0.89 6,185 0.05 ~1 
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Supplementary Figures 

Fig. S1. The SGA dataset 

(A) Development of the SGA genetic interaction score, which provides a measure of the 

genetic interaction strength (") and a p-value reflecting the confidence in interaction 

reproducibility (see Material & Methods). (B) Distribution of genetic interaction scores 

on linear (i) and logarithmic (ii) scales. As expected, most double mutant pairs show no 

genetic interaction (low " values, black in ii), while fewer pairs exhibit negative (red in ii) 

and positive (green in ii) interactions. Negative interactions are approximately 2-fold 

more prominent than positive interactions. (C) Functional coverage evaluated on the 

basis of the extent to which query mutant strains screened in SGA covered 10 broad 

functional categories. The 10 groups were defined using a Bayesian framework for data 

integration as described in (S57). Approximately 30% of all genes were screened 

genome-wide by SGA, which translates to at least 35% coverage of each partially 

overlapping functional category (light blue). Dark blue bars indicate the proportion of 

essential genes screened in each category. (D) Recall of published genetic interactions.  

Both negative (i) and positive (ii) SGA genetic interactions (") are significantly enriched 

for known genetic interactions. Extreme negative (" < –0.8) and positive (" > 0.25) 

interactions are approximately 140- and 80-fold enriched for previously identified 

interactions, respectively. (E) Dataset size comparison. We compared the total number of 

negative (red) and positive (green) genetic interactions at our intermediate and stringent 

cutoffs (see Materials & Methods) to those reported by the 10 largest genetic interaction 

datasets available from Biogrid. The intermediate confidence SGA dataset represents a 3-

fold increase over the number of reported genetic interactions. (F) Comparison of SGA 

genetic interaction score with high-resolution liquid growth profiles (see Materials & 

Methods). We find strong agreement between scores for the same gene pairs screened on 

solid vs. liquid medium (r = 0.89). This agreement was observed for both extreme and 

modest genetic interactions.  

Fig. S2. Functional evaluation of genetic interaction scores 

(A) False positive and false negative rates. Sensitivity (black line) and precision (blue 

line) (see Materials & Methods) were systematically measured at different SGA genetic 

interaction score (") cutoffs (x-axis) and two p-value cutoffs (p < 0.5, dashed line, and 

p < 0.05, solid line). (iii) The same analysis was repeated for a subset of 211 replicate 

pairs of screens. We observed a 20–25% increase in precision for interactions derived 

from SGA screens with two replicates. Thus, we anticipate that additional rounds of 

screening will result in further improvements in precision and sensitivity. (B) Enrichment 

analysis on individual SGA genetic interactions. Enrichment was assessed systematically 

at different SGA genetic interaction score (") cutoffs as described (see Materials & 

Methods). Gene pairs exhibiting extreme negative interactions are significantly enriched 

for physically interacting pairs (blue line, >85-fold enrichment at " = –0.9) as well as 

Gene Ontology (GO) co-annotated gene pairs (black line, >16-fold enrichment at " = –

0.9). Extreme positive interactions are similarly enriched for protein-protein interactions 

(>9-fold enrichment at " = 0.4) and co-annotated gene pairs (~8-fold enrichment at 
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" = 0.4). (C) Enrichment analysis on SGA genetic interaction profile similarities. Genetic 

profile similarity was determined by computing Pearson correlation coefficients for gene 

pairs using their complete genetic interaction profiles (negative and positive interactions, 

black line), only negative interactions (red line) and only positive interactions (green 

line). Precision and recall against protein-protein interaction (i) and GO co-annotation (ii) 

standards were calculated as described previously (S5). Similarity over positive 

interactions alone is less informative than similarity over negative interactions alone 

indicating a higher incidence of noise or less functionally informative interactions 

profiles in the positive interaction dataset. However, optimal predictive power is obtained 

using complete profiles based on both negative and positive interactions. (D) Function 

prediction capacity of the genetic interaction dataset. (i) We compared the performance 

of four data types (genetic interactions, PPIs, gene expression and cellular localization) in 

predicting gene function as determined by the GeneMANIA algorithm (S9) (see 

Materials & Methods). Despite covering only 30% of genes in the genome, the SGA 

dataset alone shows function prediction capacity similar to the combination of two 

AP/MS studies. (ii) Comparison of individual high-throughput datasets in predicting gene 

function (see Materials & Methods). The genetic interactions reported in this study 

provide the second best predictive power. (iii) Comparison of high-throughput genetic 

interaction studies using the leave-one-out approach (see Materials & Methods). 

Removing the genetic interactions from the current study results in the greatest loss in 

average precision. 

Fig. S3. par32"  mutants exhibit altered Tor-regulated responses 

in the presence of ammonia 

Wild-type (BY4741) and par32! cells transformed with pMRT2 (MET17, HIS3, LEU2) 

and either (A) pMS29 (pGAP1-lacZ) or (B) pCK272 (pCIT2-lacZ) were cultured in SD 

ammonia medium at 24°C and assayed for #-galactosidase activity as described in (S58). 

Data shown is the average and standard deviation for three to six assays. Loss of PAR32 

results in reduced GAP1 and increased CIT2 reporter gene activity when grown in the 

presence of ammonia. These results suggest that Par32, which is phosphorylated in 

response to rapamycin (www.yeastgenome.org), may function in Tor-mediated regulation 

of Gln3, Gat1 and Rtg1/3.  

Fig. S4. Sgt2 physical interactions and Pex15 localization 

(A) Similar to GET pathway mutants, SGT2 is required for proper Pex15 localization (see 

Materials & Methods). (B) Pex15 mis-localization to mitochondria is exacerbated in a 

strain lacking both SGT2 and PEX19. 

Fig. S5. Correlation between genetic interaction network degree 
and single mutant fitness defects 

(A) Genetic interaction degree vs. single mutant fitness trend. (Left) The fraction of 

screened pairs that have interactions (either positive, negative, or combined) among the 

3885 array genes at the intermediate cutoff (|"| > 0.08, p < 0.05). The genes are binned 

into seven groups on the basis of their single mutant fitness. (Right) Degree vs. single 

mutant fitness trend for query strains. The fraction of screened pairs that have interactions 
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among the 1712 query genes across the 3885 arrays at the intermediate cutoff. 

Moderately sick query mutants tend to show more interactions similar to the trend for 

array strains, but mutants below ~0.6 fitness show a decrease in both the number of 

positive and negative genetic interactions identified in SGA screens. This asymmetry is a 

side effect of the increased experimental noise associated with the screening of sick query 

mutants, which results in a loss of interaction sensitivity for extremely sick query 

mutants. (B) Genetic interaction degree vs. single mutant fitness trend for different types 

of genetic perturbations. The fractions of interactions among the 1712 query genes across 

3885 array genes are separated by the type of genetic perturbation used (either deletion, 

temperature-sensitive allele (TS), or DAmP allele). The number of interactions for 

essential genes correlates with allele fitness measured at semi-permissive temperature 

(26
o
C), which is similar to the trend for deletion mutants. A decrease in the number of 

interactions for very sick queries is a result of increased experimental noise as described 

in (A). (C) Functional relatedness of genetic interaction partners of mutants grouped by 

their single mutant fitness. To rule out the possibility that the increased number of genetic 

interactions identified for mutants with severe fitness defects was the result of increased 

experimental noise, we evaluated the functional coherence among each gene’s interaction 

partners. Specifically, the utility of genetic interaction scores (") for predicting functional 

associations between genes was assessed on the basis of a gold standard derived from the 

biological process aspect of the Gene Ontology, as described in (S5). The area under an 

ROC curve (AUC) was measured using the Wilcoxon-Mann-Whitney statistic for each 

gene. Per-gene AUC scores were averaged over each set of genes, grouped by their 

fitness. On average, genetic interaction partners of sicker mutants tend to be more 

functionally related than interaction partners of healthy single mutants. (i) shows results 

of this analysis on array genes’ interactions and (ii) shows the analogous experiment for 

query genes’ interactions.  (D) (left) Correlation of various features with genetic 

interaction negative degree, genetic interaction positive degree, and PPI degree 

controlling for the linear effect of single mutant fitness, using partial correlation analysis, 

as described in Materials & Methods, Correlation analysis of genetic and physical 

interaction degree. (E) Correlation between PPI degree and gene-specific features. 

Pearson correlation coefficients were computed between the panel of gene-specific 

features with degree as measured by three different physical interaction technologies. 

Data sets used for the various PPI networks are described in Materials & Methods. All 

interaction degree is measured on a set of interactions at the intermediate cutoff 

(|"| > 0.08, p < 0.05). 95% confidence intervals on correlation coefficients are indicated 

for all plots.  (F) Analysis of evolutionary rates for disordered and non-disordered genetic 

interaction hubs. Negative genetic interactions were used to define a set of hub genes (> 

95
th

 percentile) and non-hubs genes (< 50
th

 percentile) and for each group, the average 

dN/dS was measured for structurally disordered and ordered proteins. The disordered and 

ordered proteins were defined as the > 95
th

 percentile and  < 50
th

 percentile based on the 

disorder measure reported in (S31). Disordered genetic interaction hubs tend to evolve 

significantly faster than other genes (both hubs and non-hubs). 
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Fig. S6. Positive genetic interaction frequency within and 
between bioprocesses 

(A) The fraction of screened gene pairs exhibiting interactions was measured for 17 

broadly defined functional neighborhoods (see Materials & Methods, Biological process 

annotations). The color of each process-process element reflects the fraction of positive 

genetic or AP/MS-derived interactions (blue: below frequency of random pairs; black: 

random background of interactions; yellow: above frequency of random pairs), with the 

diagonal representing within-process interactions. Functional neighborhoods for which 

the frequency of interactions could not be statistically distinguished from background (p 

< 0.05) are shown as black. (B) Gene-specific factors explaining the variation in number 

of positive genetic interactions across biological processes. ANCOVA analysis was used 

to assess the significance of gene-specific factors at predicting the number of genetic 

interactions observed for a specific biological process (see Materials & Methods). Single 

mutant fitness defect was always included as a factor in the analysis. The top panel plots 

the average number of positive genetic interactions across each process with the color 

indicating processes that have more interactions than expected (p < 0.05), processes 

whose positive interaction degree is explained by the factors indicated on the y-axis, and 

those with fewer interactions than expected (p < 0.05).  For each process, the proportion 

of variance explained by each of the gene-specific factors is indicated by the 

corresponding column in the heat map. Four of 17 neighborhoods have significantly 

more/less interactions (p < 0.05) than can be explained by the single gene features.  

Bioprocesses with more interactions than could be explained by gene-specific features 

were chromatin/transcription, nuclear-cytoplasmic transport, and lipid/sterol/fatty acid 

biosynthesis, while DNA replication/repair/HR/cohesion was the only process with 

significantly fewer than could be explained. 

Fig. S7. Evaluation of the overlap of the genetic and physical 
genetic interaction networks 

The coverage of protein-protein interactions by SGA-derived genetic interactions. We 

measured the direct overlap between the genetic interactions reported in this study and 

physical interactions reported by four high-throughput physical interaction datasets based 

on three different technologies: AP/MS (S23, 24), Y2H (S25) and PCA (S26). For 

physical interactions identified by each of the three physical interaction technologies, we 

measured the fraction of pairs that also showed a genetic interaction (both positive and 

negative) at the intermediate cutoff (|"| > 0.08, p < 0.05). For comparison, the fraction of 

pairs identified by other protein-protein interaction technologies (excluding the dataset of 

interest) was also measured. The results illustrate that the coverage of protein-protein 

interactions by genetic interactions often exceeds the overlap between two independent 

physical interaction studies. Only PPIs that were screened in this study were considered.  

Fig. S8. Homozygous and heterozygous profiling of Erodoxin 

(A) Homozygous deletion profiling. Scatter plot visualization of results from 

homozygous profiling of Erodoxin. The y-axis represents the sensitivity of each 

homozygous deletion strain when treated for 5 generations in the presence of drug. 

Strains exhibiting severe sensitivity to Erodoxin are highlighted. Experiments were 
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conducted as described previously (S29). (B) Heterozygous deletion profiling. Scatter 

plot visualization of results from heterozygous profiling of Erodoxin. The y-axis 

represents the sensitivity of each heterozygous essential gene deletion strain when treated 

for 5 generations in the presence of drug. Strains exhibiting severe sensitivity to Erodoxin 

are highlighted. ERO1 encodes an enzyme participating in disulfide bond formation by 

recharging protein disulfide isomerase (PDI) into its oxidized state (S19). FAD1 encodes 

a cofactor that functions in the Ero1 reaction cycle (S59). Experiments were conducted as 

described previously (S29). 
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Data Files 
All data files can be downloaded from: 

http://drygin.ccbr.utoronto.ca/~costanzo2009/ 

Data file S1. Raw data file 

The file contains the complete SGA genetic interaction dataset in a tab-delimited format 

with 13 columns: Query ORF, Query gene name, Array ORF, Array gene name, Genetic 

interaction score ("), Standard deviation, p-value, Query single mutant fitness (SMF), 

Query SMF standard deviation, Array SMF, Array SMF standard deviation, Double 

mutant fitness, Double mutant fitness standard deviation. No cutoff or filtering was 

applied. 

Data file S2. Raw data matrix 

The file contains the complete SGA genetic interaction matrix in Java Treeview format. 

No cutoff or filtering was applied. 

Data file S3. Dataset at lenient cutoff 

The file contains the SGA genetic interaction dataset with a lenient cutoff applied 

(p-value < 0.05). Reciprocal interactions, where query A was crossed to array B and 

query B was crossed to array A, were processed as follows. If genetic interaction scores 

for the double mutants AB and BA show opposite interaction signs (AB is positive and 

BA is negative, or vice-versa), both pairs were removed. If genetic interaction scores for 

AB and BA show the same interaction sign (both positive or both negative), the 

interaction with the lowest p-value was retained. The file is provided in a tab-delimited 

format with 7 columns: Query ORF, Query gene name, Array ORF, Array gene name, 

Genetic interaction score ("), Standard deviation, p-value. 

Data file S4. Dataset at intermediate cutoff 

The file contains the SGA genetic interaction dataset with an intermediate cutoff applied 

(|"| > 0.08, p-value < 0.05). Reciprocal interactions, where query A was crossed to array 

B and query B was crossed to array A, were processed as follows. If genetic interaction 

scores for the double mutants AB and BA show opposite interaction signs (AB is positive 

and BA is negative, or viceversa), both pairs were removed. If genetic interaction scores 

for AB and BA show the same interaction sign (both positive or both negative), the 

interaction with the lowest p-value was retained. The file is provided in a tab-delimited 

format with 7 columns: Query ORF, Query gene name, Array ORF, Array gene name, 

Genetic interaction score ("), Standard deviation, p-value. All analyses were performed 

on this dataset unless otherwise indicated. 

Data file S5. Dataset at stringent cutoff 

The file contains the SGA genetic interaction dataset with a stringent cutoff applied 

(" < –0.12, p-value < 0.05 or " > 0.16, p-value < 0.05). Reciprocal interactions, where 

query A was crossed to array B and query B was crossed to array A, were processed as 
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follows. If genetic interaction scores for the double mutants AB and BA show opposite 

interaction signs (AB is positive and BA is negative, or viceversa), both pairs were 

removed. If genetic interaction scores for AB and BA show the same interaction sign 

(both positive or both negative), the interaction with the lowest p-value was retained. The 

file is provided in a tab-delimited format with 7 columns: Query ORF, Query gene name, 

Array ORF, Array gene name, Genetic interaction score ("), Standard deviation, p-value. 

Data file S6. Biological process annotations 

Data file S7. Chemical genomics dataset 

The file contains the fitness defect scores for 4933 non-essential homozygous and 1107 

essential heterozygous deletion mutants in the presence of 11 chemical treatments. Each 

row represents a gene deletion strain, given by its ORF name. Each column represents a 

treatment experiment. 

Data file S8. The Genetic Landscape of a Cell 

A poster illustrating the global cell map based on genetic interaction profiles (as in Fig. 1) 

and eight sub-networks, each corresponding to a magnified region of the global map. 

Node color corresponds to a biological processes indicated in the legend. 

Data file S9. List of query mutants screened in this study 

The file contains the list of 1712 query mutants used in the study. 

Data file S10. List of arrays mutants screened in this study 

The file contains the list of 3885 array mutants used in the study. 
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